Measurement of Fructose-Asparagine Concentrations in Human and Animal Foods

人类和动物食品中果糖-天冬酰胺浓度的测量

阅读:9
作者:Jikang Wu, Anice Sabag-Daigle, Thomas O Metz, Brooke L Deatherage Kaiser, Venkat Gopalan, Edward J Behrman, Vicki H Wysocki, Brian M M Ahmer

Abstract

The food-borne bacterial pathogen, Salmonella enterica, can utilize fructose-asparagine (F-Asn) as its sole carbon and nitrogen source. F-Asn is the product of an Amadori rearrangement following the nonenzymatic condensation of glucose and asparagine. Heating converts F-Asn via complex Maillard reactions to a variety of molecules that contribute to the color, taste, and aroma of heated foods. Among these end derivatives is acrylamide, which is present in some foods, especially in fried potatoes. The F-Asn utilization pathway in Salmonella, specifically FraB, is a potential drug target because inhibition of this enzyme would lead to intoxication of Salmonella in the presence of F-Asn. However, F-Asn would need to be packaged with the FraB inhibitor or available in human foods. To determine if there are foods that have sufficient F-Asn, we measured F-Asn concentrations in a variety of human and animal foods. The 400 pmol/mg F-Asn found in mouse chow is sufficient to intoxicate a Salmonella fraB mutant in mouse models of salmonellosis, and several human foods were found to have F-Asn at this level or higher (fresh apricots, lettuce, asparagus, and canned peaches). Much higher concentrations (11 000-35 000 pmol/mg dry weight) were found in heat-dried apricots, apples, and asparagus. This report reveals possible origins of F-Asn as a nutrient source for Salmonella and identifies foods that could be used together with a FraB inhibitor as a therapeutic agent for Salmonella.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。