HDAC9-mediated calmodulin deacetylation induces memory impairment in Alzheimer's disease

HDAC9 介导的钙调蛋白去乙酰化导致阿尔茨海默病记忆障碍

阅读:5
作者:Hai-Long Zhang, Shufen Hu, Pin Yang, Han-Chun Long, Quan-Hong Ma, Dong-Min Yin, Guang-Yin Xu

Aims

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. AD pathology involves protein acetylation. Previous studies have mainly focused on histone acetylation in AD, however, the roles of nonhistone acetylation in AD are less explored.

Conclusions

HDAC9-mediated CaM deacetylation induces memory impairment in AD, HDAC9, or CaM acetylation may become potential therapeutic targets for AD.

Methods

The protein acetylation and expression levels were detected by western blotting and co-immunoprecipitation. The stoichiometry of acetylation was measured by home-made and site-specific antibodies against acetylated-CaM (Ac-CaM) at K22, K95, and K116. Hippocampus-dependent learning and memory were evaluated by using the Morris water maze, novel object recognition, and contextual fear conditioning tests.

Results

We showed that calmodulin (CaM) acetylation is reduced in plasma of AD patients and mice. CaM acetylation and its target Ca2+ /CaM-dependent kinase II α (CaMKIIα) activity were severely impaired in AD mouse brain. The stoichiometry showed that Ac-K22, K95-CaM acetylation were decreased in AD patients and mice. Moreover, we screened and identified that lysine deacetylase 9 (HDAC9) was the main deacetylase for CaM. In addition, HDAC9 inhibition increased CaM acetylation and CaMKIIα activity, and hippocampus-dependent memory in AD mice. Conclusions: HDAC9-mediated CaM deacetylation induces memory impairment in AD, HDAC9, or CaM acetylation may become potential therapeutic targets for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。