AKT1 distinctively suppresses MyD88-depenedent and TRIF-dependent Toll-like receptor signaling in a kinase activity-independent manner

AKT1 以不依赖激酶活性的方式明显抑制 MyD88 依赖性和 TRIF 依赖性 Toll 样受体信号传导

阅读:10
作者:Kosuke Zenke, Masashi Muroi, Ken-Ichi Tanamoto

Abstract

We found that AKT1, a primary effector molecule of PI3K-AKT signaling, distinctively suppressed Toll-like receptor (TLR)-mediated MyD88-dependent and Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF)-dependent signaling by inhibiting NF-κB activation and IRF3 activity independently of its kinase activity. In AKT1 knockout RAW264.7 cells, lipopolysaccharide (LPS)-induced transcription and protein production of cytokines including IL-1β and TNF-α (regulated by the MyD88-dependent pathway), as well as IFN-β and RANTES (C-C motif chemokine ligand 5: CCL-5; regulated by the TRIF-dependent pathways) was enhanced compared to wild type cells. In response to LPS stimulation, AKT1 knockout cells also exhibited enhanced NF-κB and IFN-β promoter activities, which were reduced to a level comparable to that in wild type cells by complementation with either AKT1 or its kinase-dead mutant (AKT1-KD). Expression of AKT1 or AKT1-KD similarly suppressed NF-κB and IFN-β promoter activities induced by LPS and other TLR ligands in wild type cells. Analysis of NF-κB activation caused by transient expression of proteins involved in the MyD88-dependent pathway in TLR signaling revealed that AKT1 suppressed signaling that occurs between activation of IKKβ and that of NF-κB. In contrast, AKT1 appeared to suppress the IFN-β promoter through inhibition of IRF3 activity itself. These results demonstrate a novel, non-kinase function of AKT1 that inhibits TLR signaling, and suggest the multifunctional nature of AKT1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。