Use of a Human Artificial Chromosome for Delivering Trophic Factors in a Rodent Model of Amyotrophic Lateral Sclerosis

使用人类人工染色体在肌萎缩侧索硬化症啮齿动物模型中传递营养因子

阅读:11
作者:Yasuhiro Watanabe, Yasuhiro Kazuki, Kanako Kazuki, Mitsutaka Ebiki, Mami Nakanishi, Kazuomi Nakamura, Miho Yoshida Yamakawa, Hiroyuki Hosokawa, Tetsuya Ohbayashi, Mitsuo Oshimura, Kenji Nakashima

Abstract

A human artificial chromosome (HAC) is maintained as an episome within a cell and avoids random integration into the host genome. It can transfer multiple and/or large transgenes along with their regulatory elements thereby resembling native chromosomes. Using this HAC system, we established mesenchymal stem cells (MSCs) that simultaneously expressed hepatocyte growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor 1, termed HAC-MSCs. This cell line provides an opportunity for stable transplantation and thorough analyses. We then introduced the cells for the treatment of a neurodegenerative disorder, amyotrophic lateral sclerosis. The HAC-MSCs were transplanted via the fourth cerebral ventricle (CV) or intravenous (i.v.) infusion at various ages of recipient mice. Littermate- and sex-matched mice underwent a sham procedure. Compared to the controls, there was an encouraging trend of increased life span via CV transplantation and delayed onset in i.v. infusion 60 days after transplantation. Further, we confirmed a statistically significant increase in life span via CV transplantation at 100 days. This effect was not seen in mice transplanted with MSCs lacking the HAC. We successfully enhanced the trophic potential of the MSCs using the HAC. This strategy could be a promising direction for the treatment of neurodegenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。