CRTC2 Is a Key Mediator of Amino Acid-Induced Milk Fat Synthesis in Mammary Epithelial Cells

CRTC2 是乳腺上皮细胞中氨基酸诱导乳脂合成的关键介质

阅读:7
作者:Ping Li, Chengjian Zhou, Xueying Li, Mengmeng Yu, Meng Li, Xuejun Gao

Abstract

Amino acids can stimulate milk fat synthesis, but the underlying molecular mechanism is still largely unknown. In this study, we studied the regulatory role and corresponding molecular mechanism of cAMP response element-binding protein-regulated transcription coactivator 2 (CRTC2) in amino acid-induced milk fat synthesis in mammary epithelial cells. We showed that leucine and methionine stimulated CRTC2 but not p-CRTC2(Ser171) expression and nuclear localization in cow mammary epithelial cells. Knockdown of CRTC2 decreased milk fat synthesis and sterol regulatory element binding protein 1c (SREBP-1c) expression and activation, whereas its overexpression had the opposite effects. Neither knockdown nor overexpression of CRTC2 affected β-casein synthesis and phosphorylation of the machanistic target of rapamycin (mTOR), suggesting that CRTC2 only regulates milk fat synthesis. CRTC2 knockdown abolished the stimulation of leucine and methionine on SREBP-1c expression and activation. Knockdown or overexpression of CRTC2 did not affect the protein level of cAMP-response element-binding protein (CREB) and its phosphorylation but decreased or increased the binding of p-CREB to the promoter of SREBP-1c gene and its mRNA expression, respectively. Mutation of Ser171 of CRTC2 did not alter the stimulation of CRTC2 on SREBP-1c expression and activation, further suggesting that CRTC2 functions in the nucleus. mTOR inhibition by rapamycin totally blocked the stimulation of leucine and methionine on CRTC2 expression. The expression of CRTC2 was dramatically higher in the mouse mammary gland of lactation period, compared with that of the dry and puberty periods, whereas p-CRTC2(Ser171) was not changed, further supporting that CRTC2 is a key transcription coactivator for milk fat synthesis. These results uncover that CRTC2 is a key transcription coactivator of amino acid-stimulated mTOR-mediated milk fat synthesis in mammary epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。