Electrical Properties of Two Types of Membrane Component Used in Taste Sensors

味觉传感器中两种膜元件的电特性

阅读:6
作者:Zhanyi Xiang, Yifei Jing, Hidekazu Ikezaki, Kiyoshi Toko

Abstract

The lipid phosphoric acid di-n-decyl ester (PADE) has played an important role in the development of taste sensors. As previously reported, however, the concentration of PADE and pH of the solution affected the dissociation of H+, which made the measurement results less accurate and stable. In addition, PADE caused deterioration in the response to bitterness because PADE created the acidic environment in the membrane. To solve these problems, our past study tried to replace the PADE with a completely dissociated substance called tetrakis [3,5-bis (trifluoromethyl) phenyl] borate sodium salt dehydrate (TFPB) as lipid. To find out whether the two substances can be effectively replaced, it is necessary to perform an in-depth study on the properties of the two membranes themselves. In this study, we fabricated two types of membrane electrodes, based on PADE or TFPB, respectively, using 2-nitrophenyl octyl ether (NPOE) as a plasticizer. We measured the selectivity to cations such as Cs+, K+, Na+ and Li+, and also the membrane impedance of the membranes comprising PADE or TFPB of the different concentrations. As a result, we found that any concentration of PADE membranes always had low ion selectivity, while the ion selectivity of TFPB membranes was concentration-dependent, showing increasing ion selectivity with the TFPB concentrations. The ion selectivity order was Cs+>K+>Na+>Li+. The hydration of ions was considered to participate in this phenomenon. In addition, the membrane impedance decreased with increasing PADE and TFPB concentrations, while the magnitudes differed, implying that there is a difference in the dissociation of the two substances. The obtained results will contribute to the development of novel receptive membranes of taste sensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。