Pulsed focused ultrasound-induced displacements in confined in vitro blood clots

脉冲聚焦超声在体外密闭血凝块中引起的位移

阅读:6
作者:Cameron C Wright, Kullervo Hynynen, David E Goertz

Abstract

Ultrasound has been shown to potentiate the effects of tissue plasminogen activator to improve clot lysis in a range of in vitro and in vivo studies as well as in clinical trials. One possible mechanism of action is acoustic radiation force-induced clot displacements. In this study, we investigate the temporal and spatial dynamics of clot displacements and strain initiated by focused ultrasound pulses. Displacements were produced by a 1.51 MHz f-number 1 transducer over a range of acoustic powers (1-85 W) in clots constrained within an agar vessel phantom channel. Displacements were tracked during and after a 5.45 ms therapy pulse using a 20 MHz high-frequency ultrasound imaging probe. Peak thrombus displacements were found to be linear as a function of acoustic power up to 60 W before leveling off near 128 μm for the highest transmit powers. The time to peak displacement and recovery time of blood clots was largely independent of acoustic powers with measured values near 2 ms. A linear relationship between peak axial strain and transmit power was observed, reaching a peak value of 11% at 35 W. The peak strain occurred ~0.75 mm from the focal zone for all powers investigated in both lateral and axial directions. These results indicate that substantial displacements can be induced by focused ultrasound in confined blood clots, and that the spatial and temporal displacement patterns are complex and highly dependent on exposure conditions, which has implications for future work investigating their link to clot lysis and for developing approaches to exploit these effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。