Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer

外泌体 miR-141-3p 调节成骨细胞活性促进前列腺癌成骨转移

阅读:5
作者:Yun Ye, Su-Liang Li, Yue-Yun Ma, Yan-Jun Diao, Liu Yang, Ming-Quan Su, Zhuo Li, Yang Ji, Juan Wang, Lin Lei, Wei-Xiao Fan, La-Xiu Li, Yi Xu, Xiao-Ke Hao

Abstract

Exosomes from cancer cells, which contain microRNA and reach metastasis loci prior to cancer cells, stimulate the formation of a metastatic microenvironment. Previous studies have shown that exosomal miR-141-3p is associated with metastatic prostate cancer (PCa). However, the role and regulatory mechanism of miR-141-3p in the microenvironment of bone metastases require further study. In this study, we performed a series of experiments in vivo and in vitro to determine whether exosomal miR-141-3p from MDA PCa 2b cells regulates osteoblast activity to promote osteoblastic metastasis. We demonstrate that extracts obtained from cell culture supernatants contained exosomes and that miR-141-3p levels were significantly higher in MDA PCa 2b cell exosomes. Via confocal imaging, numerous MDA PCa 2b exosomes were observed to enter osteoblasts, and miR-141-3p was transferred to osteoblasts through MDA PCa 2b exosomes in vitro. Exosomal miR-141-3p from MDA PCa 2b promoted osteoblast activity and increased osteoprotegerin OPG expression. miR-141-3p suppressed the protein levels of the target gene DLC1, indicating its functional significance in activating the p38MAPK pathway. In animal experiments, exosomal miR-141-3p had bone-target specificity and promoted osteoblast activity. Mice injected with miR-141-3p-mimics exosomes developed apparent osteoblastic bone metastasis. Exosomal miR-141-3p from MDA PCa 2b cells promoted osteoblast activity and regulated the microenvironment of bone metastases, which plays an important role in the formation of bone metastases and osteogenesis damage in PCa. Clarifying the specific mechanism of bone metastasis will help generate new possibilities for the treatment of PCa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。