Comparison of Trimethylsilyl Cellulose-Stabilized Carbonate and Hydroxide Nanoparticles for Deacidification and Strengthening of Cellulose-Based Cultural Heritage

三甲基硅基纤维素稳定碳酸盐和氢氧化物纳米粒子对纤维素基文化遗产脱酸和强化的比较

阅读:6
作者:Lunjakorn Amornkitbamrung, Doris Bračič, Matej Bračič, Silvo Hribernik, Jasna Malešič, Ulrich Hirn, Alenka Vesel, Karin Stana Kleinschek, Rupert Kargl, Tamilselvan Mohan

Abstract

Herein, colloidal dispersions of alkaline nanoparticles (NPs: CaCO3 and Mg(OH)2) are stabilized by trimethylsilyl cellulose (TMSC) in hexamethyldisiloxane and employed to treat historical wood pulp paper by an effortless dip-coating technique. Both alkaline NPs exhibit high stability and no size and shape changes upon stabilization with the polymer, as shown by UV-vis spectroscopy and transmission electron microscopy. The long-term effect of NP/TMSC coatings is investigated in detail using accelerated aging. The results from the pH-test and back-titration of coated papers show a complete acid neutralization (pH ∼ 7.4) and introduction of adequate alkaline reserve even after prolonged accelerated aging. Scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and infrared and water contact angle measurements showed the introduction of a thin and smooth hydrophobic NP/TMSC coating on the paper fibers. Acid-catalyzed desilylation of TMSC was observed by declining C-Si infrared absorbance peaks upon aging. The CaCO3 coatings are superior to Mg(OH)2 with respect to a reduced yellowing and lower cellulose degradation upon aging as shown by colorimetric measurements and degree of polymerization analysis. The tensile strength and folding endurance of coated and aged papers are improved to 200-300 and 50-70% as illustrated by tensile strength and double folding endurance measurements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。