A Novel Approach to Develop Lager Yeast with Higher NADH Availability to Improve the Flavor Stability of Industrial Beer

开发具有更高 NADH 利用率的拉格酵母以提高工业啤酒风味稳定性的新方法

阅读:5
作者:Xin Xu, Chengtuo Niu, Chunfeng Liu, Jinjing Wang, Feiyun Zheng, Qi Li

Abstract

Flavor stability is important for beer quality and extensive efforts have been undertaken to improve this. In our previous work, we proved a concept whereby metabolic engineering lager yeast with increased cellular nicotinamide adenine dinucleotide hydride (NADH) availability could enhance the flavor stability of beer. However, the method for breeding non-genetically modified strains with higher NADH levels remains unsolved. In the current study, we reported a novel approach to develop such strains based on atmospheric and room temperature plasma (ARTP) mutagenesis coupled with 2,4-dinitrophenol (DNP) selection. As a result, we obtained a serial of strains with higher NADH levels as well as improved flavor stability. For screening an optimal strain with industrial application potential, we examined the other fermentation characteristics of the mutants and ultimately obtained the optimal strain, YDR-63. The overall fermentation performance of the strain YDR-63 in pilot-scale fermentation was similar to that of the parental strain YJ-002, but the acetaldehyde production was decreased by 53.7% and the resistance staling value of beer was improved by 99.8%. The forced beer aging assay further demonstrated that the favor stability was indeed improved as the contents of 5-hydroxymethylfurfural in YDR-63 was less than that in YJ-002 and the sensory notes of staling was weaker in YDR-63. We also employed this novel approach to another industrial strain, M14, and succeeded in improving its flavor stability. All the findings demonstrated the efficiency and versatility of this new approach in developing strains with improved flavor stability for the beer industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。