In vivo generation of neural tumors from neoplastic pluripotent stem cells models early human pediatric brain tumor formation

肿瘤多能干细胞体内生成神经肿瘤可模拟早期人类儿童脑肿瘤的形成

阅读:6
作者:Tamra E Werbowetski-Ogilvie, Ludivine Coudière Morrison, Aline Fiebig-Comyn, Mickie Bhatia

Abstract

Recent studies have identified gene signatures in malignant tumors that are associated with human embryonic stem cells, suggesting a molecular relationship between aggressive cancers and pluripotency. Here, we characterize neural precursors (NPs) derived from transformed human embryonic stem cells (N-t-hESCs) that exhibit neoplastic features of human brain tumors. NPs derived from t-hESCs have enhanced cell proliferation and an inability to mature toward the astrocytic lineage, compared with progeny derived from normal human embryonic stem cells (N-hESCs) independent of adherent or neurosphere outgrowth. Intracranial transplantation of NPs derived from N-t-hESCs and N-hESCs into NOD SCID mice revealed development of neuroectoderm tumors exclusively from the N-t-hESCs NPs and not from normal N-hESCs. These tumors infiltrated the ventricles and the cerebellum of recipient mice and displayed morphological, phenotypic, and molecular features associated with classic medulloblastoma including retention of a pluripotent signature. Importantly, N-t-hESCs did not exhibit cytogenetic changes associated with medulloblastoma, suggesting that aberrant cellular and molecular properties precede the acquisition of karyotypic changes thus underscoring the value of this model system of human medulloblastoma. Our study demonstrates that NPs from a starting population of neoplastic human pluripotent parent cells possess brain tumor-initiating cell capacity, thereby providing a model system to investigate initiation and progression of primitive human neural cancers that are difficult to assess using somatic sources.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。