Immune Profiling To Predict Outcome of Clostridioides difficile Infection

通过免疫分析预测艰难梭菌感染的结果

阅读:7
作者:Mayuresh M Abhyankar, Jennie Z Ma, Kenneth W Scully, Andrew J Nafziger, Alyse L Frisbee, Mahmoud M Saleh, Gregory R Madden, Ann R Hays, Mendy Poulter, William A Petri Jr

Abstract

There is a pressing need for biomarker-based models to predict mortality from and recurrence of Clostridioides difficile infection (CDI). Risk stratification would enable targeted interventions such as fecal microbiota transplant, antitoxin antibodies, and colectomy for those at highest risk. Because severity of CDI is associated with the immune response, we immune profiled patients at the time of diagnosis. The levels of 17 cytokines in plasma were measured in 341 CDI inpatients. The primary outcome of interest was 90-day mortality. Increased tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), C-C motif chemokine ligand 5 (CCL-5), suppression of tumorigenicity 2 receptor (sST-2), IL-8, and IL-15 predicted mortality by univariate analysis. After adjusting for demographics and clinical characteristics, the mortality risk (as indicated by the hazard ratio [HR]) was higher for patients in the top 25th percentile for TNF-α (HR = 8.35, P = 0.005) and IL-8 (HR = 4.45, P = 0.01) and lower for CCL-5 (HR = 0.18, P ≤ 0.008). A logistic regression risk prediction model was developed and had an area under the receiver operating characteristic curve (AUC) of 0.91 for 90-day mortality and 0.77 for 90-day recurrence. While limited by being single site and retrospective, our work resulted in a model with a substantially greater predictive ability than white blood cell count. In conclusion, immune profiling demonstrated differences between patients in their response to CDI, offering the promise for precision medicine individualized treatment.IMPORTANCEClostridioides difficile infection is the most common health care-associated infection in the United States with more than 20% patients experiencing symptomatic recurrence. The complex nature of host-bacterium interactions makes it difficult to predict the course of the disease based solely on clinical parameters. In the present study, we built a robust prediction model using representative plasma biomarkers and clinical parameters for 90-day all-cause mortality. Risk prediction based on immune biomarkers and clinical variables may contribute to treatment selection for patients as well as provide insight into the role of immune system in C. difficile pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。