Bicontinuous Spider Network Architecture of Free-Standing MnCoO X @NCNF Anode for Li-Ion Battery

用于锂离子电池的独立 MnCoO X @NCNF 阳极的双连续蜘蛛网络结构

阅读:5
作者:Jitendra Shashikant Samdani, Tong-Hyun Kang, Chunfei Zhang, Jong-Sung Yu

Abstract

Herein, a smart strategy is proposed to tailor unique interwoven nanocable architecture consisting of MnCoO x nanoparticles embedded in one-dimensional (1D) mesoporous N-doped carbon nanofibers (NCNFs) by using electrospinning technique. The as-prepared network mat of N-doped carbon nanofibers with embedded MnCoO x nanoparticles (MnCoO x @NCNFs) is tested as a current collector-free and binder-free flexible anode, which eliminates slurry preparation process during electrode fabrication in the Li-ion battery (LIB). The MnCoO x @NCNFs possess versatile structural characteristics that can address simultaneously different issues such as poor conductivity, low cycling stability, volume variation, flexibility, and binder issue associate with the metal oxide. The free-standing mat electrode shows not only high initial discharge and charge capacities but also reversible discharge cycling stability of almost 80% retention up to 100 cycles and 60% retention up to 500 cycles at 1.0 A/g. Such high Li storage capacity and excellent cycling stability are attributed to the unique flexible and free-standing spider network-like architecture of the 1D MnCoO x @NCNFs that provides the platform for bicontinuous electron/ion pathways for superior electrochemical performance. Along with excellent electrochemical performance, simple synthesis procedure of unique binder-free MnCoO x @NCNFs can achieve cost-effective scalable mass production for practical use in a flexible mode, not merely in LIBs but also in a wide spectrum of energy storage fields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。