Flexible Thermal Sensors Based on Organic Field-Effect Transistors with Polymeric Channel/Gate-Insulating and Light-Blocking Layers

基于具有聚合物通道/栅极绝缘和光阻挡层的有机场效应晶体管的柔性热传感器

阅读:10
作者:Myeonghun Song, Jooyeok Seo, Hwajeong Kim, Youngkyoo Kim

Abstract

Here, we report flexible thermal sensors based on organic field-effect transistors (OFETs) that are fabricated using polymeric channel and gate-insulating layers on flexible polymer film substrates. Poly(3-hexylthiophene) and poly(methyl methacrylate) were used as the channel and gate-insulating layers, respectively, whereas indium-tin oxide-coated poly(ethylene naphthalate) films (thickness = 130 μm) were employed as the flexible substrates. Aluminum-coated polymer films were attached on top of the channel parts in the flexible OFETs to block any influence by light illumination. The present flexible OFET-based thermal sensors exhibited typical p-type transistor characteristics at a temperature range of 25-100 °C, while the hole mobility of devices was linearly increased with the temperature. The drain current could be amplified at various temperatures by adjusting the gate and drain voltages. In particular, stable sensing performances were measured during the repeated approaching/retreating cycle with a heat source. The flexible OFET thermal sensors attached on human fingers could sense heat from human fingers as well as from approaching objects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。