Alterations in Adiposity and Glucose Homeostasis in Adult Gasp-1 Overexpressing Mice

成年 Gasp-1 过表达小鼠的肥胖和葡萄糖稳态改变

阅读:7
作者:Luce Périè, Alexis Parenté, Fabienne Baraige, Laetitia Magnol, Véronique Blanquet

Aims

Myostatin is known as a powerful negative regulator of muscle growth playing a key role in skeletal muscle homeostasis. Recent studies revealed that myostatin-deficient mice lead to an increase of insulin sensitivity, a decrease of adiposity and a resistance to obesity, showing that myostatin can also impact on metabolism. Thus, myostatin appeared as a potential therapeutic target to treat insulin resistance.

Background/aims

Myostatin is known as a powerful negative regulator of muscle growth playing a key role in skeletal muscle homeostasis. Recent studies revealed that myostatin-deficient mice lead to an increase of insulin sensitivity, a decrease of adiposity and a resistance to obesity, showing that myostatin can also impact on metabolism. Thus, myostatin appeared as a potential therapeutic target to treat insulin resistance.

Conclusion

Altogether, these data suggested that overexpressing Gasp-1 mice develop most of the symptoms associated with metabolic syndrome and could be a relevant model for the study of obesity or type 2 diabetes.

Methods

We generated transgenic mice overexpressing Gasp-1, a myostatin inhibitor.

Results

Surprisingly, we found that these mice gained weight with age due to an increase in fat mass associated with ectopic fat accumulation. In addition, these mice developed an adipocyte hypertrophy, hyperglycemia, hyperinsulinemia, muscle and hepatic insulin resistance. Understanding the molecular networks controlling this insulin resistance responsiveness in overexpressing Gasp-1 mice is essential. Molecular analyses revealed a deregulation of adipokines and muscle cytokines expression, but also an increase in plasma myostatin levels. The increase in myostatin bioactivity by a positive feedback mechanism in the Tg(Gasp-1) transgenic mice could lead to this combination of phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。