Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces

利用配体修饰的载体和表面调节 Pd 纳米粒子的催化活性和选择性

阅读:7
作者:Fernanda Parra da Silva, Jhonatan Luiz Fiorio, Liane Marcia Rossi

Abstract

The organic moiety plays an essential role in the design of homogeneous catalysts, where the ligands are used to tune the catalytic activity, selectivity, and stability of the transition metal centers. The impact of ligands on the catalytic performance of metal nanoparticle catalysts is still less understood. Here, we prepared supported nanoparticle (NP) catalysts by the immobilization of preformed Pd NPs on the ligand-modified silica surfaces bearing amine, ethylenediamine, and diethylenetriamine groups. After excluding any size effect, we were able to study the influence of the ligands grafted on the support surface on the catalytic activity of the supported nanoparticles. Higher activity was observed for the Pd NPs supported on propylamine-functionalized support, whereas the presence of ethylenediamine and diethylenetriamine groups was detrimental to the activity. Upon the addition of excess of these amine ligands as surface modifiers, the hydrogenation of alkene to alkane was fully suppressed and, therefore, we were able to tune Pd selectivity. The selective hydrogenation of alkynes into alkenes, although a considerable challenge on the traditional palladium catalysts, was achieved here for a range of alkynes by combining Pd NPs and amine ligands.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。