Arm-First Approach toward Cross-Linked Polymers with Hydrophobic Domains via Hypervalent Iodine-Mediated Click Chemistry

通过高价碘介导的点击化学以臂优先方式制备具有疏水域的交联聚合物

阅读:7
作者:Saikat Maiti, Pousali Samanta, Gargi Biswas, Dibakar Dhara

Abstract

In this work, synthesis of two cross-linked polymeric systems through isoxazoline ring formation using nitrile oxide-acrylate click chemistry has been described. In the first system, styrenic block copolymer with oxime-functionalized middle block was synthesized using S,S'-bis(α,α'-dimethyl-α″-acetic acid)trithiocarbonate as chain-transfer agent using reversible addition fragmentation chain-transfer technique. This block copolymer was further utilized to prepare core cross-linked star polymers by reacting with a four-arm acrylic cross-linker by employing environment-friendly, nontoxic PhI(OAc)2-mediated "click reaction" via the formation of isoxazoline ring. In the second system, two linear styrenic block copolymers, one containing oxime and another containing acrylate group, were reacted to form a cross-linked (CS) polymeric system. Formation of cross-linked polymers and isoxazoline ring was confirmed by Fourier transform infrared spectroscopy, gel permeation chromatography, NMR spectroscopy, and dynamic light scattering studies. Later, we also demonstrated that in aqueous medium these CS polymers produced polymeric nanoparticles (NPs), which can be used as potential carriers of hydrophobic drug molecules. The loading capacity of the hydrophobic domains has been investigated using coumarin dyes with varying hydrophobicity through steady-state and time-resolved spectroscopy studies. The polymeric NPs were also shown to successfully encapsulate a hydrophobic drug doxorubicin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。