Chloroquine Protects Human Corneal Epithelial Cells from Desiccation Stress Induced Inflammation without Altering the Autophagy Flux

氯喹保护人类角膜上皮细胞免受干燥应激引起的炎症而不改变自噬通量

阅读:8
作者:Shivapriya Shivakumar, Trailokyanath Panigrahi, Rohit Shetty, Murali Subramani, Arkasubhra Ghosh, Nallathambi Jeyabalan

Abstract

Dry eye disease (DED) is a multifactorial ocular surface disorder affecting millions of individuals worldwide. Inflammation has been associated with dry eye and anti-inflammatory drugs are now being targeted as the alternate therapeutic approach for dry eye condition. In this study, we have explored the anti-inflammatory and autophagy modulating effect of chloroquine (CQ) in human corneal epithelial and human corneal fibroblasts cells exposed to desiccation stress, (an in-vitro model for DED). Gene and protein expression profiling of inflammatory and autophagy related molecular factors were analyzed in HCE-T and primary HCF cells exposed to desiccation stress with and without CQ treatment. HCE-T and HCF cells exposed to desiccation stress exhibited increased levels of activated p65, TNF-α, MCP-1, MMP-9, and IL-6. Further, treatment with CQ decreased the levels of active p65, TNF-α, MCP-1, and MMP-9 in cells underdesiccation stress. Increased levels of LC3B and LAMP1 markers in HCE-T cells exposed to desiccation stress suggest activation of autophagy and the addition of CQ did not alter these levels. Changes in the phosphorylation levels of MAPKinase and mTOR pathway proteins were found in HCE-T cells under desiccation stress with or without CQ treatment. Taken together, the data suggests that HCE-T cells under desiccation stress showed NFκB mediated inflammation, which was rescued through the anti-inflammatory effect of CQ without altering the autophagy flux. Therefore, CQ may be used as an alternate therapeutic management for dry eye condition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。