Polyimides Containing Phosphaphenanthrene Skeleton: Gas-Transport Properties and Molecular Dynamics Simulations

含磷杂菲骨架的聚酰亚胺:气体传输特性和分子动力学模拟

阅读:11
作者:Rimpa Chatterjee, Soumendu Bisoi, Anaparthi Ganesh Kumar, Venkat Padmanabhan, Susanta Banerjee

Abstract

A series of new semifluorinated polyimide (PI) films with phosphaphenanthrene skeleton were prepared by thermal imidization of poly(amic acid)s derived from a diamine monomer: 1,1-bis[2'-trifluoromethyl-4'-(4″-aminophenyl)phenoxy]-1-(6-oxido-6H-dibenz⟨c,e⟩⟨1,2⟩oxaphosphorin-6-yl)ethane on reaction with four structurally different aromatic dianhydrides. The chemical structures of the polymers were established by Fourier transform infrared and 1H NMR spectroscopy techniques. The polymers showed a good combination of thermal and mechanical properties (T d10 up to 416 °C under synthetic air and tensile strength up to 91 MPa), low dielectric constant (2.10-2.55 at 1 MHz), and T g values as high as 261 °C. Gas permeabilities of these films were investigated for four different gases CO2, O2, N2, and CH4. The PI films showed high gas permeability (P CO2 up to 175 and P O2 up to 64 barrer) with high permselectivity (P CO2 /P CH4 up to 51 and P O2 /P N2 up to 7.1), and the values are better than those of many other similar polymers reported earlier. For the O2/N2 gas pair, the PIs (PI A) surpassed the present upper boundary limit drawn by Robeson. A detailed molecular dynamics (MD) simulation study has been conducted to understand better the gas-transport properties. The effect of phosphaphenanthrene skeleton, its spatial arrangement, and size distribution function of the free volume were studied using molecular dynamics (MD) simulation and the results are correlated with the experimental data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。