Thermophysical and Forced Convection Studies on (Alumina + Menthol)-Based Deep Eutectic Solvents for Their Use as a Heat Transfer Fluid

(氧化铝 + 薄荷醇)基深共晶溶剂作为传热流体的热物理和强制对流研究

阅读:8
作者:Pyarimohan Dehury, Janardan Singh, Tamal Banerjee

Abstract

The current work reports the thermophysical and flow measurements of novel thermal solvents based on deep eutectic solvents (DESs) and alumina-based nanoparticle-dispersed deep eutectic solvents (NDDESs) for its use as a potential solar energy storage medium. The DESs were synthesized using a hydrogen bond donor (i.e., oleic acid) and a hydrogen bond acceptor (i.e., dl-menthol) by using the COSMO-SAC-predicted equimolar ratio at a temperature of 350.15 K. Thereafter, NDDESs or nanofluids were formed by dispersing different volume fractions (0.001, 0.005, 0.0075, and 0.01) of Al2O3 nanoparticles in the DESs. The optimum volume fraction (0.005) of Al2O3 nanoparticles was selected through their thermophysical properties (density, viscosity, thermal conductivity, and specific heat capacity) and its agglomeration or stability behavior. As expected, NDDESs with a 0.005 volume fraction gave a higher enhancement in thermal conductivity, viscosity, heat capacity, and density as compared to DESs. To evaluate the heat transfer coefficient, forced convection experiments were conducted in a circular test section for both DESs and NDDESs under laminar conditions (Re = 124, 186, and 250). The enhancement of the local heat transfer coefficient was found to be higher when compared to their thermophysical properties. This was due to the nanoparticle migration resulting in a non-uniform distribution of both thermal conductivity and viscosity fields, which was inherently found to reduce the thermal boundary layer thickness. In the final section, the heat transfer coefficient and the Nusselt number were also validated with COMSOL Multiphysics simulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。