Effect of Sodium Oleate Surfactant Concentration Grafted onto SiO2 Nanoparticles in Polymer Flooding Processes

聚合物驱过程中接枝到 SiO2 纳米粒子上的油酸钠表面活性剂浓度的影响

阅读:5
作者:Sebastián Llanos, Lady J Giraldo, Oveimar Santamaria, Camilo A Franco, Farid B Cortés

Abstract

The nanotechnology has been applied recently to increase the efficiency of enhanced oil recovery methods. The main objective of this study is to evaluate the effect of SiO2 nanoparticle functionalization with different loadings of sodium oleate surfactant for polymer flooding processes. The sodium oleate surfactant was synthesized using oleic acid and NaCl. The SiO2 nanoparticles were functionalized by physical adsorption using different surfactant loadings of 2.45, 4.08, and 8.31 wt % and were characterized by thermogravimetric analyses, Fourier-transform infrared spectroscopy, dynamic light scattering, and zeta potential. Adsorption and desorption experiments of partially hydrolyzed polyacrylamide (HPAM) polymer solutions over the unmodified and surface-modified nanoparticles were performed, with higher adsorption capacity as the surfactant loading increases. The adsorption isotherms have a type III behavior, and polymer desorption from the nanoparticle surface was considered null. The effect of nanoparticles in the polymer solutions was evaluated through rheological measurements, interfacial tension (IFT) tests, contact angle measurements, capillary number, and displacement tests in a micromodel. The surface-modified SiO2 nanoparticles showed a slight effect on the viscosity of the polymer solution and high influence on the IFT reduction and wettability alteration of the porous medium leading to an increase of the capillary number. Displacement tests showed that the oil recovery could increase up to 23 and 77% regarding polymer flooding and water flooding, respectively, by including the surface-functionalized materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。