Physicochemical Properties Govern the Activity of Potent Antiviral Flavones

物理化学特性决定强效抗病毒黄酮的活性

阅读:9
作者:Xavier Martin-Benlloch, Sibylle Haid, Alexandra Novodomska, Frank Rominger, Thomas Pietschmann, Elisabeth Davioud-Charvet, Mourad Elhabiri

Abstract

Ladanein (i.e., 5,6,7-trihydroxylated flavone) was demonstrated to act as a powerful virucidal agent toward a broad range of enveloped virus particles. Fe(III) coordination and pH are indeed among the key parameters that might favor both bioactivation of the flavone and consequent host cell entry inhibition. In this present work, the impact of fluorinated groups on the physicochemical and antiviral properties of the flavone was investigated, thus allowing a deeper understanding of the antiviral mode of action. The improved synthesis of ladanein allowed accessing a broad range of analogues, some of them being significantly more active than the former ladanein lead compound. We first determined the acido-basic properties of this homogenous series of compounds and then investigated their electrochemical behavior. Fe(III) coordination properties (stability, spectral behavior, and kinetics) of ladanein and its analogues were then examined (quasiphysiological conditions) and provided key information of their stability and reactivity. Using the determined physicochemical parameters, the critical impact of the iron complexation and medium acidity was confirmed on hepatitis C virus (HCV) particles (pre)treated with ladanein. Finally, a preliminary structure-HCV entry inhibition relationship study evidenced the superior antiviral activity of the ladanein analogues bearing an electron-withdrawing group in para position (FCF 3 > FOCF 3 > FFCF 3 > FF > FOMe) on the B cycle in comparison with the parent ladanein itself.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。