Stromal cell-mediated mitochondrial redox adaptation regulates drug resistance in childhood acute lymphoblastic leukemia

基质细胞介导的线粒体氧化还原适应调节儿童急性淋巴细胞白血病的耐药性

阅读:6
作者:Jizhong Liu, Ashish Masurekar, Suzanne Johnson, Sohini Chakraborty, John Griffiths, Duncan Smith, Seema Alexander, Clare Dempsey, Catriona Parker, Stephanie Harrison, Yaoyong Li, Crispin Miller, Yujun Di, Zhumur Ghosh, Shekhar Krishnan, Vaskar Saha

Abstract

Despite the high cure rates in childhood acute lymphoblastic leukemia (ALL), relapsed ALL remains a significant clinical problem. Genetic heterogeneity does not adequately explain variations in response to therapy. The chemoprotective tumor microenvironment may additionally contribute to disease recurrence. This study identifies metabolic reprogramming of leukemic cells by bone marrow stromal cells (BMSC) as a putative mechanism of drug resistance. In a BMSC-extracellular matrix culture model, BMSC produced chemoprotective soluble factors and facilitated the emergence of a reversible multidrug resistant phenotype in ALL cells. BMSC environment induced a mitochondrial calcium influx leading to increased reactive oxygen species (ROS) levels in ALL cells. In response to this oxidative stress, drug resistant cells underwent a redox adaptation process, characterized by a decrease in ROS levels and mitochondrial membrane potential with an upregulation of antioxidant production and MCL-1 expression. Similar expanded subpopulations of low ROS expressing and drug resistant cells were identified in pre-treatment bone marrow samples from ALL patients with slower response to therapy. This suggests that the bone marrow microenvironment induces a redox adaptation in ALL subclones that protects against cytotoxic stress and potentially gives rise to minimal residual disease. Targeting metabolic remodeling by inhibiting antioxidant production and antiapoptosis was able to overcome drug resistance. Thus metabolic plasticity in leukemic cell response to environmental factors contributes to chemoresistance and disease recurrence. Adjunctive strategies targeting such processes have the potential to overcome therapeutic failure in ALL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。