Enolpyruvate transferase MurAAA149E, identified during adaptation of Enterococcus faecium to daptomycin, increases stability of MurAA-MurG interaction

在屎肠球菌适应达托霉素的过程中发现的烯醇丙酮酸转移酶 MurAAA149E 可提高 MurAA-MurG 相互作用的稳定性

阅读:6
作者:Yue Zhou, Budi Utama, Shivendra Pratap, Adeline Supandy, Xinhao Song, Truc T Tran, Heer H Mehta, Cesar A Arias, Yousif Shamoo

Abstract

Daptomycin (DAP) is an antibiotic frequently used as a drug of last resort against vancomycin-resistant enterococci. One of the major challenges when using DAP against vancomycin-resistant enterococci is the emergence of resistance, which is mediated by the cell-envelope stress system LiaFSR. Indeed, inhibition of LiaFSR signaling has been suggested as a strategy to "resensitize" enterococci to DAP. In the absence of LiaFSR, alternative pathways mediating DAP resistance have been identified, including adaptive mutations in the enolpyruvate transferase MurAA (MurAAA149E), which catalyzes the first committed step in peptidoglycan biosynthesis; however, how these mutations confer resistance is unclear. Here, we investigated the biochemical basis for MurAAA149E-mediated adaptation to DAP to determine whether such an alternative pathway would undermine the potential efficacy of therapies that target the LiaFSR pathway. We found cells expressing MurAAA149E had increased susceptibility to glycoside hydrolases, consistent with decreased cell wall integrity. Furthermore, structure-function studies of MurAA and MurAAA149E using X-ray crystallography and biochemical analyses indicated only a modest decrease in MurAAA149E activity, but a 16-fold increase in affinity for MurG, which performs the last intracellular step of peptidoglycan synthesis. Exposure to DAP leads to mislocalization of cell division proteins including MurG. In Bacillus subtilis, MurAA and MurG colocalize at division septa and, thus, we propose MurAAA149E may contribute to DAP nonsusceptibility by increasing the stability of MurAA-MurG interactions to reduce DAP-induced mislocalization of these essential protein complexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。