Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation

二甲双胍挽救致癌转化引起的细胞表面主要组织相容性复合体 I 类 (MHC-I) 缺陷

阅读:5
作者:Cristina Oliveras-Ferraros, Sílvia Cufí, Alejandro Vazquez-Martin, Octavio J Menendez, Joaquim Bosch-Barrera, Begoña Martin-Castillo, Jorge Joven, Javier A Menendez

Abstract

Active avoidance by tumor cells from attack and elimination by immune cells is an emerging cancer hallmark that is achieved primarily through decreasing the levels of major histocompatibility complex class I (MHC-I) at the cancer cells' surface. Deficiencies in MHC-I antigen-restricted immunosurveillance may be intertwined with an altered, Warburg-like cancer cell-intrinsic metabolism, another emerging hallmark of cancer that involves a switch from mitochondrial respiration to glycolysis to efficiently support large-scale biosynthetic programs that are required for active cell proliferation. We recently envisioned that intervention strategies aimed at reversing the bioenergetic signature of cancer cells (e.g., the antidiabetic biguanide metformin) should correct oncogene (e.g., HER2)-driven MHC-I defects, thus preventing immune escape of oncogene transformants. First, we explored how metformin treatment impacted mitochondrial biogenesis in cultured breast cancer cells overexpressing the membrane tyrosine kinase receptor HER2, the best-characterized downregulator of MHC-I. Metformin exposure was found to dose-dependently increase the expression levels of cytochrome c oxidase I and mitochondrial succinate dehydrogenase, which are encoded by mitochondrial and nuclear DNA, respectively. Second, we explored whether metformin-enhanced mitochondrial biogenesis might significantly alter the MHC-I status in breast carcinoma cells. MHC-I expression, as assessed by flow cytometry using an anti-HLA-ABC monoclonal antibody, was fully restored (up to ~25-fold upregulation) in MHC-I-negative HER2 gene-amplified carcinoma cells. These findings may help delineate a previously unrecognized mechanism through which metformin (and metformin-like drugs) may enable a cancer patient's own immune system to mount an efficient anti-metastasis response that can prevent or delay disease recurrence. Restored antigenicity and immunogenicity of tumor cells may represent a previously unrecognized primary mode of action underlying the cancer-preventive effects of metformin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。