Epigenetic Mechanism of SETD1B-mediated Histone Methylation in Cognitive Impairment Induced by Sevoflurane Anesthesia in Neonatal Mice

SETD1B介导的组蛋白甲基化在七氟醚麻醉诱导的新生小鼠认知障碍中的表观遗传机制

阅读:4
作者:Zhao Wang, Jing Zhang, Qian Tang, Yujie Tan

Abstract

Sevoflurane (Sev) anesthesia is associated with cognitive deficits and neurotoxicity. This study explores the epigenetic mechanism of SET domain containing 1B (SETD1B) in Sev-induced cognitive impairment in neonatal mice. Neonatal mice (C57BL/6, n = 72) were exposed to 3% Sev for 2 h per day at P6, 7, and 8, and the control neonatal mice were only separated from the mother for 2 h. The mice were divided into groups of 12 individuals, with an equal number of male and female mice in each group. Mice were intraperitoneally injected with adenovirus-packaged SETD1B overexpression vector. Behavioral tests (Morris water maze, open field test, T-maze, novel object recognition, etc.) were performed at P30. Mouse hippocampal neuronal cells were cultured in vitro. SETD1B, C-X-C motif chemokine receptor 4 (CXCR4), NLR family pyrin domain containing 1 (NLRP1), Cleaved Caspase1, and GSDMD-N expressions in hippocampal tissues or cells were determined by quantitative real-time polymerase chain reaction and Western blot. SETD1B and histone H3 lysine 4 methylation (H3K4me1, H3K4me2, and H3K4me3) enrichment on the CXCR4 promoter was analyzed by ChIP. Sev insulted cognitive impairment and diminished SETD1B expression in mouse hippocampal tissues. SETD1B overexpression mitigated cognitive impairment, enhanced H3K4me3 levels in hippocampal tissues, and restrained hippocampal neuronal pyroptosis. SETD1B increased CXCR4 expression by elevating the H3K4me3 level on the CXCR4 promoter, thereby curbing NLRP1/Caspase1-mediated hippocampal neuronal pyroptosis. To conclude, SETD1B enhances CXCR4 expression by elevating the H3K4me3 level on the CXCR4 promoter, thereby suppressing NLRP1/Caspase1-triggered hippocampal neuronal pyroptosis and alleviating Sev-induced cognitive impairment in neonatal mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。