The Role of Mg(OH)2 in the So-Called "Base-Free" Oxidation of Glycerol with AuPd Catalysts

Mg(OH)2 在 AuPd 催化剂作用下甘油“无碱”氧化反应中的作用

阅读:8
作者:Jile Fu, Qian He, Peter J Miedziak, Gemma L Brett, Xiaoyang Huang, Samuel Pattisson, Mark Douthwaite, Graham J Hutchings

Abstract

Mg(OH)2 - and Mg(OH)2 -containing materials can provide excellent performance as supports for AuPd nanoparticles for the oxidation of glycerol in the absence of base, which is considered to be a result of additional basic sites on the surface of the support. However, its influence on the reaction solution is not generally discussed. In this paper, we examine the relationship between the basic Mg(OH)2 support and AuPd nanoparticles in detail using four types of catalyst. For these reactions, the physical interaction between Mg(OH)2 and AuPd was adjusted. It was found that the activity of the AuPd nanoparticles increased with the amount of Mg(OH)2 added under base-free conditions, regardless of its interaction with the noble metals. In order to investigate how Mg(OH)2 affected the glycerol oxidation, detailed information about the performance of AuPd/Mg(OH)2 , physically mixed (AuPd/C+Mg(OH)2 ) and (AuPd/C+NaHCO3 ) was obtained and compared. Furthermore, NaOH and Mg(OH)2 were added during the reaction using AuPd/C. All these results indicate that the distinctive and outstanding performance of Mg(OH)2 supported catalysts in base-free condition is in fact directly related to its ability to affect the pH during the reaction and as such, assists with the initial activation of the primary alcohol, which is considered to be the rate determining step in the reaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。