Identification of three site mutations in nonstructural protein 1β, glycoprotein 3 and glycoprotein 5 that correlate with increased interferon α resistance of porcine reproductive and respiratory syndrome virus

鉴定非结构蛋白 1β、糖蛋白 3 和糖蛋白 5 中的三个位点突变与猪繁殖与呼吸综合征病毒干扰素 α 抗性增强相关

阅读:9
作者:Jia Su, Xinhui Zhang, Bicheng He, Xinna Ge, Jun Han, Lei Zhou, Xin Guo, Hanchun Yang

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically significant pathogen that has been recognized for its genetic variation, rapid evolution, and immune suppression. Type I interferons (IFNs) play an important role in host defense against viral infection by inducing many antiviral effectors, which might be a selective pressure driving viral evolution towards IFN resistance. To investigate the IFN resistance-related variation of PRRSV genome under IFN selective pressure and explore the molecular mechanism of IFN sensitivity changes, PRRSV strain JXwn06 was serially propagated in porcine pulmonary alveolar macrophages (PAMs) with IFNα treatment for 45 passages and 3 rounds of purification. Four mutant strains named JX-αP51n (n = 1, 2, 3 and 4) with reduced IFNα sensitivity were selected; the strains showed a 100-fold higher titer than the passaging-control strain JX-P51 in IFNα-treated PAMs. IFNα-resistant strains were found to antagonize the IFNα-activated JAK-STAT signaling pathway to a greater extent than the nonresistant strain by down-regulating the expression level of IFNα-activated pJAK1 through interfering with phosphatase. Furthermore, the PRRSV genetic variations interacting with IFNα were identified by full genomic sequencing and alignment. Among these mutations, amino acid substitutions in nsp1β (E87 G), GP3 (F143 L) and GP5 (Y136 H) were found to correlate with increased IFNα resistance by enhancing the suppression effect on pJAK1, which could be further increased if these three substitution sites were combined. These findings provide some novel evidence for understanding PRRSV genetic variation under host selective pressure and viral evolution strategies to evade the host innate immune response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。