Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle

缓慢分裂的卫星细胞在成年肌肉中保留了长期自我更新能力

阅读:9
作者:Yusuke Ono, Satoru Masuda, Hyung-Song Nam, Robert Benezra, Yuko Miyagoe-Suzuki, Shin'ichi Takeda

Abstract

Satellite cells are muscle stem cells that have important roles in postnatal muscle growth and adult muscle regeneration. Although fast- and slow-dividing populations in activated satellite cells have been observed, the functional differences between them remain unclear. Here we elucidated the relationship between proliferation behaviour and satellite cell function. To assess the frequency of cell division, satellite cells isolated from mouse EDL muscle were labelled with the fluorescent dye PKH26, stimulated to proliferate and then sorted by FACS. The vast majority of activated satellite cells were PKH26(low) fast-dividing cells, whereas PKH26(high) slow-dividing cells were observed as a minority population. The fast-dividing cells generated a higher number of differentiated and self-renewed cells compared with the slow-dividing cells. However, cells derived from the slow-dividing population formed secondary myogenic colonies when passaged, whereas those from the fast-dividing population rapidly underwent myogenic differentiation without producing self-renewing cells after a few rounds of cell division. Furthermore, slow-dividing cells transplanted into injured muscle extensively contributed to muscle regeneration in vivo. Id1, a HLH protein, was expressed by all activated satellite cells, but the expression level varied within the slow-dividing cell population. We show that the slow-dividing cells retaining long-term self-renewal ability are restricted to an undifferentiated population that express high levels of Id1 protein (PKH26(high)Id1(high) population). Finally, genome-wide gene expression analysis described the molecular characteristics of the PKH26(high)Id1(high) population. Taken together, our results indicate that undifferentiated slow-dividing satellite cells retain stemness for generating progeny capable of long-term self-renewal, and so might be essential for muscle homeostasis throughout life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。