The role of CD36-Fabp4-PPARγ in skeletal muscle involves insulin resistance in intrauterine growth retardation mice with catch-up growth

CD36-Fabp4-PPARγ 在骨骼肌中的作用涉及宫内生长迟缓小鼠追赶性生长的胰岛素抵抗

阅读:6
作者:Jing Liu, Hang Zhao, Linlin Yang, Xing Wang, Linquan Yang, Yuling Xing, Xiuqin Lv, Huijuan Ma, Guangyao Song

Background

Studies have shown that the high incidence of type 2 diabetes in China is associated with low birth weight and excessive nutrition in adulthood, which occurred during the famine years of the 1950s and 1960s, though the specific molecular mechanisms are unclear. In this study, we proposed a severe maternal caloric restriction during late pregnancy, followed by a post weaning high-fat diet in mice. After weaning, normal and high-fat diets were provided to mice to simulate the dietary pattern of modern society.

Conclusions

LBW combined with high-fat diets may increase insulin resistance and diabetes through regulating the CD36-related Fabp4-PPARγ and AMPK/ACC signaling pathways.

Methods

The pregnant mice were divided into two groups: normal birth weight (NBW) group and low birth weight (LBW) group. After 3 weeks for weaning, the male offspring mice in the NBW and LBW groups were then randomly divided into four subgroups: NC, NH, LC and LC groups. The offspring mice in the NC, NH, LC and LC groups were respectively fed with normal diet, normal diet, high-fat diet and high-fat diet for 18 weeks. After 18 weeks of dietary intervention, detailed analyses of mRNA and protein expression patterns, signaling pathway activities, and promoter methylation states were conducted for all relevant genes.

Results

After dietary intervention for 18 weeks, the expressions of CD36, Fabp4, PPARγ, FAS, and ACC1 in the skeletal muscle tissue of the LH group were significantly increased compared with the LC and NH groups (P < 0.05). The level of p-AMPK/AMPK in the skeletal muscle tissue of the LH group was significantly decreased compared with the LC and NH groups (P < 0.05). CPT1 and PGC-1α protein expressions were up-regulated in the LH group (P < 0.05) compared to the LC group. Additionally, the DNA methylation levels of the PGC-1α and GLUT4 gene promoters in the skeletal muscle of the LH groups were higher than those of the LC and NH groups (P < 0.05). However, PPARγ DNA methylation level in the LH group was lower than those of the LC and NH groups (P < 0.05). Conclusions: LBW combined with high-fat diets may increase insulin resistance and diabetes through regulating the CD36-related Fabp4-PPARγ and AMPK/ACC signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。