Electrochemical Imaging of Endothelial Permeability Using a Large-Scale Integration-Based Device

使用大规模集成设备对内皮通透性进行电化学成像

阅读:5
作者:Kosuke Ino, Hao-Jen Pai, Kaoru Hiramoto, Yoshinobu Utagawa, Yuji Nashimoto, Hitoshi Shiku

Abstract

It is important to clarify the transport of biomolecules and chemicals to tissues. Herein, we present an electrochemical imaging method for evaluating the endothelial permeability. In this method, the diffusion of electrochemical tracers, [Fe(CN)6]4-, through a monolayer of human umbilical vein endothelial cells (HUVECs) was monitored using a large-scale integration-based device containing 400 electrodes. In conventional tracer-based assays, tracers that diffuse through an HUVEC monolayer into another channel are detected. In contrast, the present method does not employ separated channels. In detail, a HUVEC monolayer is immersed in a solution containing [Fe(CN)6]4- on the device. As [Fe(CN)6]4- is oxidized and consumed at the packed electrodes, [Fe(CN)6]4- begins to diffuse through the monolayer from the bulk solution to the electrodes and the obtained currents depend on the endothelial permeability. As a proof-of-concept, the effects of histamine on the monolayer were monitored. Also, an HUVEC monolayer was cocultured with cancer spheroids, and the endothelial permeability was monitored to evaluate the metastasis of the cancer spheroids. Unlike conventional methods, the device can provide spatial information, allowing the interaction between the monolayer and the spheroids to be monitored. The developed method is a promising tool for organs-on-a-chip and drug screening in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。