Exposure to benzo(a)pyrene suppresses mitophagy via ANT1-PINK1-Parkin pathway in ovarian corpus luteum during early pregnancy

妊娠早期暴露于苯并(a)芘可通过 ANT1-PINK1-Parkin 通路抑制卵巢黄体中的线粒体自噬

阅读:6
作者:Nanyan Li, Hanting Xu, Xueqing Liu, Rufei Gao, Junlin He, Yubin Ding, Fangfang Li, Yanqing Geng, Xinyi Mu, Xuemei Chen

Abstract

Exposure to benzo (a)pyrene (BaP) has been confirmed to interfere with embryo implantation. As the primary organ of progesterone synthesis during early pregnancy, the ovarian corpus luteum (CL) is essential for embryo implantation and pregnancy maintenance. We previously demonstrated that BaP impaired luteal function, but the molecular mechanism remains unclear. In CL cells, mitochondria are the main sites of progesterone synthesis. Mitophagy, a particular type of autophagy, regulates mitochondrial quality by degrading damaged mitochondria and ensuring the homeostasis of cell physiology. Therefore, the present study investigated the effects and the potential molecular mechanisms of BaP on ovarian mitophagy during early pregnancy. We found that BaP and its metabolite, BPDE, inhibited autophagy and PINK1/Parkin-mediated mitophagy in the pregnant ovaries and luteinized granulosa cell, KGN. Notably, adenine nucleotide translocator 1 (ANT1), a crucial mediator of PINK1-dependent mitophagy, was suppressed by BaP and BPDE both in vivo and in vitro. The inhibition of ANT1 leads to the decrease in the PINK1 bound to the outer membrane of mitochondria and consequently reduces recruitment of Parkin to the mitochondria, which is required for the subsequent clearance of mitochondria. Meanwhile, exposure to BPDE also damaged mitochondrial function, causing the reduction in mitochondrial potential and ATP production. Overexpression of ANT1 in KGN cells partially relieved the inhibition of mitophagy caused by BPDE, restored mitochondrial function and expression of hormone synthesis-associated genes. Collectively, our study firstly clarified that BaP and BPDE suppress mitophagy of CL cells via the ANT1-PINK1-Parkin pathway, which provides a new insight to explore the detailed mechanism of the BaP-induced ovarian toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。