Hypoxia mediated pulmonary edema: potential influence of oxidative stress, sympathetic activation and cerebral blood flow

缺氧介导的肺水肿:氧化应激、交感神经激活和脑血流的潜在影响

阅读:8
作者:Shadi Khademi, Melinda A Frye, Kimberly M Jeckel, Thies Schroeder, Eric Monnet, Dave C Irwin, Patricia A Cole, Christopher Bell, Benjamin F Miller, Karyn L Hamilton

Background

Neurogenic pulmonary edema (NPE) is a non-cardiogenic form of pulmonary edema that can occur consequent to central neurologic insults including stroke, traumatic brain injury, and seizure. NPE is a public health concern due to high morbidity and mortality, yet the mechanism(s) are unknown. We hypothesized that NPE, evoked by cerebral hypoxia in the presence of systemic normoxia, would be accompanied by sympathetic activation, oxidative stress, and compensatory antioxidant mechanisms.

Conclusion

Cerebral hypoxia, with systemic normoxia, is not systematically associated with an increase in oxidative stress and compensatory antioxidant enzymes in lung, suggesting oxidative stress did not contribute to NPE in lung. However, increased SNS activity may play a role in the induction of NPE during hypoxia.

Methods

Thirteen Walker hounds were assigned to cerebral hypoxia (SaO2 ~ 55 %) with systemic normoxia (SaO2 ~ 90 %) (CH; n = 6), cerebral and systemic (global) hypoxia (SaO2 ~ 60 %) (GH; n = 4), or cerebral and systemic normoxia (SaO2 ~ 90 %) (CON; n = 3). Femoral venous (CH and CON) perfusate was delivered via cardiopulmonary bypass to the brain and GH was induced by FiO2 = 10 % to maintain the SaO2 at ~60 %. Lung wet to lung dry weight ratios (LWW/LDW) were assessed as an index of pulmonary edema in addition to hemodynamic measurements. Plasma catecholamines were measured as markers of sympathetic nervous system (SNS) activity. Total glutathione, protein carbonyls, and malondialdehyde were assessed as indicators of oxidative stress. Brain and lung compensatory antioxidants were measured with immunoblotting.

Results

Compared to CON, LWW/LDW and pulmonary artery pressure were greater in CH and GH. Expression of hemeoxygenase-1 in brain was higher in CH compared to GH and CON, despite no group differences in oxidative damage in any tissue. Catecholamines tended to be higher in CH and GH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。