Transient striatal GLT-1 blockade increases EAAC1 expression, glutamate reuptake, and decreases tyrosine hydroxylase phosphorylation at ser(19)

短暂性纹状体 GLT-1 阻断可增加 EAAC1 表达、谷氨酸再摄取,并降低 ser(19) 酪氨酸羟化酶磷酸化

阅读:6
作者:Michael F Salvatore, Richard W Davis, Jennifer C Arnold, Tanya Chotibut

Abstract

Three glutamate transporters, GLT-1, GLAST, and EAAC1, are expressed in striatum. GLT-1 and, to a lesser extent, GLAST are thought to play a primary role in glutamate reuptake and mitigate excitoxicity. Progressive tyrosine hydroxylase (TH) loss seen in Parkinson's disease (PD) is associated with increased extracellular glutamate. Glutamate receptor antagonists reduce nigrostriatal loss in PD models. These observations suggest that excess synaptic glutamate contributes to nigrostriatal neuron loss seen in PD. Decreased GLT-1 expression occurs in neurodegenerative disease and PD models, suggesting decreased GLT-1-mediated glutamate reuptake contributes to excitotoxicity. To determine how transient GLT-1 blockade affects glutamate reuptake dynamics and a Ca(2+)-dependent process in nigrostriatal terminals, ser(19) phosphorylation of TH, the GLT-1 inhibitor dihydrokainic acid (DHK) was delivered unilaterally to striatum in vivo and glutamate reuptake was quantified ex vivo in crude synaptosomes 3h later. Ca(2+)-influx is associated with excitotoxic conditions. The phosphorylation of TH at ser(19) is Ca(2+)-dependent, and a change resulting from GLT-1 blockade may signify the potential for excitotoxicity to nigrostriatal neurons. Synaptosomes from DHK infused striatum had a 43% increase in glutamate reuptake in conjunction with decreased ser(19) TH phosphorylation. Using a novel GLAST inhibitor and DHK, we determined that the GLAST-mediated component of increased glutamate reuptake increased 3-fold with no change in GLAST or GLT-1 protein expression. However, GLT-1 blockade increased EAAC1 protein expression ~20%. Taken together, these results suggest that GLT-1 blockade produces a transient increase in GLAST-mediated reuptake and EAAC1 expression coupled with reduced ser(19) TH phosphorylation. These responses could represent an endogenous defense against excitotoxicity to the nigrostriatal pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。