Adenosinergic Modulation of Layer 6 Microcircuitry in the Medial Prefrontal Cortex Is Specific to Presynaptic Cell Type

内侧前额叶皮质第 6 层微电路的腺苷能调节特定于突触前细胞类型

阅读:8
作者:Chao Ding, Danqing Yang, Dirk Feldmeyer

Abstract

Adenosinergic modulation in the PFC is recognized for its involvement in various behavioral aspects including sleep homoeostasis, decision-making, spatial working memory and anxiety. While the principal cells of layer 6 (L6) exhibit a significant morphological diversity, the detailed cell-specific regulatory mechanisms of adenosine in L6 remain unexplored. Here, we quantitatively analyzed the morphological and electrophysiological parameters of L6 neurons in the rat medial prefrontal cortex (mPFC) using whole-cell recordings combined with morphological reconstructions. We were able to identify two different morphological categories of excitatory neurons in the mPFC of both juvenile and young adult rats with both sexes. These categories were characterized by a leading dendrite that was oriented either upright (toward the pial surface) or inverted (toward the white matter). These two excitatory neuron subtypes exhibited different electrophysiological and synaptic properties. Adenosine at a concentration of 30 µM indiscriminately suppressed connections with either an upright or an inverted presynaptic excitatory neuron. However, using lower concentrations of adenosine (10 µM) revealed that synapses originating from L6 upright neurons have a higher sensitivity to adenosine-induced inhibition of synaptic release. Adenosine receptor activation causes a reduction in the probability of presynaptic neurotransmitter release that could be abolished by specifically blocking A1 adenosine receptors (A1ARs) using 8-cyclopentyltheophylline (CPT). Our results demonstrate a differential expression level of A1ARs at presynaptic sites of two functionally and morphologically distinct subpopulations of L6 principal neurons, suggesting the intricate functional role of adenosine in neuronal signaling in the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。