Three-Dimensional Porous Network Electrodes with Cu(OH)2 Nanosheet/Ni3S2 Nanowire 2D/1D Heterostructures for Remarkably Cycle-Stable Supercapacitors

具有 Cu(OH)2 纳米片/Ni3S2 纳米线 2D/1D 异质结构的三维多孔网络电极,可用于循环稳定的超级电容器

阅读:4
作者:Jiansen Wang, Libing Hu, Xiaoya Zhou, Sheng Zhang, Qingshan Qiao, Lei Xu, Shaochun Tang

Abstract

Developing advanced electrode materials with highly improved charge and mass transfer is critical to obtain high specific capacities and long-term cycle life for energy storage. Herein, three-dimensionally (3D) porous network electrodes with Cu(OH)2 nanosheets/Ni3S2 nanowire 2D/1D heterostructures are rationally fabricated. Different from traditional surface deposition, the 1D/2D heterostructure network is obtained by in situ hydrothermal chemical etching of the surface layer of nickel foam (NF) ligaments. The Cu(OH)2/Ni3S2@NF electrode delivers a high specific capacity (1855 F g-1 at 2 mA cm-2) together with a remarkable stability. The capacity retention of the electrode is over 110% after 35,000 charge/discharge cycles at 20 mA cm-2. The improved performance is attributed to the enhanced electron transfer between 1D Ni3S2 and 2D Cu(OH)2, highly accessible sites of 3D network for electrolyte ions, and strong mechanical bonding and good electrical connection between Cu(OH)2/Ni3S2 active materials and the conductive NF. Especially, the unique 1D/2D heterostructure alleviates structural pulverization during the ion insertion/desertion process. A symmetric device applying the Cu(OH)2/Ni3S2@NF electrode exhibits a remarkable cycling stability with the capacitance retention maintaining over 98% after 30,000 cycles at 50 mA cm-2. Therefore, the outstanding performance promises the architectural 1D/2D heterostructure to offer potential applications in future electrochemical energy storage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。