Bioengineered Microtissue Models of the Human Bone Metastatic Microenvironment: A Novel In Vitro Theranostics Platform for Cancer Research

人类骨转移微环境的生物工程微组织模型:一种用于癌症研究的新型体外治疗诊断平台

阅读:5
作者:Nathalie Bock

Abstract

One of the major limitations of studying cancer in distant sites is the lack of representative laboratory models that mimic the biological processes occurring in vivo. In this protocol, we demonstrate the application of melt electrowriting technology (MEW) to provide 3D microfiber scaffolds suitable for this purpose. Using primary human cells, MEW scaffolds support the reproducible formation of human bone-like 3D microenvironments. Co-culture with human cancer cells provides an in vitro bioengineered model of metastases in bone, suitable for investigating cell-cell and cell-matrix interactions between bone and cancer cells. By proposing variations to standard tissue histology, immunohistochemistry, immunofluorescence, and 3D imaging techniques, we show how to characterize cell morphology and protein expression in a reproducibly engineered bone metastatic microtissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。