Machine learning dissection of human accelerated regions in primate neurodevelopment

机器学习解剖人类灵长类神经发育加速区域

阅读:5
作者:Sean Whalen, Fumitaka Inoue, Hane Ryu, Tyler Fair, Eirene Markenscoff-Papadimitriou, Kathleen Keough, Martin Kircher, Beth Martin, Beatriz Alvarado, Orry Elor, Dianne Laboy Cintron, Alex Williams, Md Abul Hassan Samee, Sean Thomas, Robert Krencik, Erik M Ullian, Arnold Kriegstein, John L Rubenstein,

Abstract

Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。