A novel in vitro Caenorhabditis elegans transcription system

一种新型体外秀丽隐杆线虫转录系统

阅读:4
作者:Phillip Wibisono, Yiyong Liu, Jingru Sun

Background

Caenorhabditis elegans is an excellent model organism for biological research, but its contributions to biochemical elucidation of eukaryotic transcription mechanisms have been limited. One of the biggest obstacles for C. elegans biochemical studies is the high difficulty of obtaining functionally active nuclear extract due to its thick surrounding cuticle. A C. elegans in vitro transcription system was once developed by Lichtsteiner and Tjian in the 1990s, but it has not become widely used, most likely because the transcription reactions were re-constituted with nuclear extract from embryos, not from larval or adult worms, and the method of Dounce homogenization used to prepare the nuclear extract could lead to protein instability. Besides Dounce homogenization, several other techniques were developed to break worms, but no transcription reactions were re-constituted following worm disruption using these approaches. A C. elegans transcription system with effective preparation of functionally active nuclear extract from larval or adult worms has yet to be established. Additionally, non-radioactive

Conclusions

In this study, we developed an in vitro C. elegans transcription system that re-constitutes transcription reactions with nuclear extract of larval or adult worms and can both qualitatively and quantitatively detect transcription activity using non-radioactive approaches. This in vitro system is useful for biochemically studying C. elegans transcription mechanisms and gene expression regulation. The effective preparation of functionally active nuclear extract in our system fills a technical gap in biochemical studies of C. elegans and will expand the usefulness of this model organism in addressing many biological questions beyond transcription.

Results

By employing Balch homogenization, we achieved effective disruption of larval and adult worms and obtained functionally active nuclear extract through subcellular fractionation. In vitro transcription reactions were successfully re-constituted using such nuclear extract. Furthermore, a PCR-based non-radioactive detection method was adapted into our system to either qualitatively or quantitatively detect transcription. Using this system to assess how pathogen infection affects C. elegans transcription revealed that Pseudomonas aeruginosa infection changes transcription activity in a promoter- or gene-specific manner. Conclusions: In this study, we developed an in vitro C. elegans transcription system that re-constitutes transcription reactions with nuclear extract of larval or adult worms and can both qualitatively and quantitatively detect transcription activity using non-radioactive approaches. This in vitro system is useful for biochemically studying C. elegans transcription mechanisms and gene expression regulation. The effective preparation of functionally active nuclear extract in our system fills a technical gap in biochemical studies of C. elegans and will expand the usefulness of this model organism in addressing many biological questions beyond transcription.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。