Use of 2,6-diaminopurine as a potent suppressor of UGA premature stop codons in cystic fibrosis

使用 2,6-二氨基嘌呤作为囊性纤维化中 UGA 过早终止密码子的强效抑制剂

阅读:5
作者:Catherine Leroy, Sacha Spelier, Nadège Charlene Essonghe, Virginie Poix, Rebekah Kong, Patrick Gizzi, Claire Bourban, Séverine Amand, Christine Bailly, Romain Guilbert, David Hannebique, Philippe Persoons, Gwenaëlle Arhant, Anne Prévotat, Philippe Reix, Dominique Hubert, Michèle Gérardin, Mathias Ch

Abstract

Nonsense mutations are responsible for around 10% of cases of genetic diseases, including cystic fibrosis. 2,6-diaminopurine (DAP) has recently been shown to promote efficient readthrough of UGA premature stop codons. In this study, we show that DAP can correct a nonsense mutation in the Cftr gene in vivo in a new CF mouse model, in utero, and through breastfeeding, thanks, notably, to adequate pharmacokinetic properties. DAP turns out to be very stable in plasma and is distributed throughout the body. The ability of DAP to correct various endogenous UGA nonsense mutations in the CFTR gene and to restore its function in mice, in organoids derived from murine or patient cells, and in cells from patients with cystic fibrosis reveals the potential of such readthrough-stimulating molecules in developing a therapeutic approach. The fact that correction by DAP of certain nonsense mutations reaches a clinically relevant level, as judged from previous studies, makes the use of this compound all the more attractive.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。