Mitochondrial respiratory dysfunction due to the conversion of substituted cathinones to methylbenzamides in SH-SY5Y cells

SH-SY5Y 细胞中取代卡西酮转化为甲基苯甲酰胺导致的线粒体呼吸功能障碍

阅读:4
作者:Bjørnar den Hollander, Mira Sundström, Anna Pelander, Antti Siltanen, Ilkka Ojanperä, Eero Mervaala, Esa R Korpi, Esko Kankuri

Abstract

The increased use of cathinone-type designer drugs, known as legal highs, has led to concerns about their potential neurotoxicity due to their similarity to methamphetamine (METH). Therefore, closer investigations of their toxic effects are needed. We investigated the effects of the cathinones 4-methylmethcathinone (4-MMC) and 3,4-methylenedioxymethcathinone (MDMC) and the amphetamine METH on cytotoxicity and mitochondrial respiration in SH-SY5Y neuroblastoma cells. We also investigated the contribution of reactive species, dopamine, Bcl-2 and tumor necrosis factor α (TNFα) on toxicity. Finally, we investigated the effect of cathinone breakdown products using ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry and studied their involvement in toxicity. We observed dose-dependent increases in cytotoxicity and decreases in mitochondrial respiration following treatment with all cathinones and amphetamines. Glutathione depletion increases amphetamine, but not cathinone toxicity. Bcl-2 and TNFα pathways are involved in toxicity but dopamine levels are not. We also show that cathinones, but not amphetamines, spontaneously produce reactive species and cytotoxic methylbenzamide breakdown products when in aqueous solution. These results provide an important first insight into the mechanisms of cathinone cytotoxicity and pave the way for further studies on cathinone toxicity in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。