MS-Based in Situ Proteomics Reveals AMPylation of Host Proteins during Bacterial Infection

基于 MS 的原位蛋白质组学揭示细菌感染过程中宿主蛋白质的 AMPylation

阅读:5
作者:Theresa Rauh, Sophie Brameyer, Pavel Kielkowski, Kirsten Jung, Stephan A Sieber

Abstract

Bacteria utilize versatile strategies to propagate infections within human cells, e.g., by the injection of effector proteins, which alter crucial signaling pathways. One class of such virulence-associated proteins is involved in the AMPylation of eukaryotic Rho GTPases with devastating effects on viability. In order to get an inventory of AMPylated proteins, several technologies have been developed. However, as they were designed for the analysis of cell lysates, knowledge about AMPylation targets in living cells is largely lacking. Here, we implement a chemical-proteomic method for deciphering AMPylated host proteins in situ during bacterial infection. HeLa cells treated with a previously established cell permeable pronucleotide probe (pro-N6pA) were infected with Vibrio parahaemolyticus, and modified host proteins were identified upon probe enrichment and LC-MS/MS analysis. Three already known targets of the AMPylator VopS-Rac1, RhoA, and Cdc42-could be confirmed, and several other Rho GTPases were additionally identified. These hits were validated in comparative studies with V. parahaemolyticus wild type and a mutant producing an inactive VopS (H348A). The method further allowed to decipher the sites of modification and facilitated a time-dependent analysis of AMPylation during infection. Overall, the methodology provides a reliable detection of host AMPylation in situ and thus a versatile tool in monitoring infection processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。