Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis

咪喹莫特诱发的双相银屑病小鼠模型中皮肤树突状细胞和巨噬细胞的动力学和转录组学

阅读:5
作者:Dorothea Terhorst, Rabie Chelbi, Christian Wohn, Camille Malosse, Samira Tamoutounour, Audrey Jorquera, Marc Bajenoff, Marc Dalod, Bernard Malissen, Sandrine Henri

Abstract

Psoriasis is a chronic inflammatory skin disease of unknown etiology. Previous studies showed that short-term, 5-7 d-long application of imiquimod (IMQ), a TLR7 agonist, to the skin of mice triggers a psoriasis-like inflammation. In the current study, by applying IMQ for 14 consecutive d, we established an improved mouse psoriasis-like model in that it recapitulated many of the clinical and cellular hallmarks observed in human patients during both the early-onset and the late-stable phase of psoriasis. Although macrophages and dendritic cells (DCs) have been proposed to drive the psoriatic cascade, their largely overlapping phenotype hampered studying their respective role. Based on our ability to discriminate Langerhans cells (LCs), conventional DCs, monocytes, monocyte-derived DCs, macrophages, and plasmacytoid DCs in the skin, we addressed their dynamics during both phases of our biphasic psoriasis-like model. Plasmacytoid DCs were not detectable during the whole course of IMQ treatment. During the early phase, neutrophils infiltrated the epidermis, whereas monocytes and monocyte-derived DCs were predominant in the dermis. During the late phase, LCs and macrophage numbers transiently increased in the epidermis and dermis, respectively. LC expansion resulted from local proliferation, a conclusion supported by global transcriptional analysis. Genetic depletion of LCs permitted to evaluate their function during both phases of the biphasic psoriasis-like model and demonstrated that their absence resulted in a late phase that is associated with enhanced neutrophil infiltration. Therefore, our data support an anti-inflammatory role of LCs during the course of psoriasis-like inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。