Enhancing the retrograde axonal transport by curcumin promotes autophagic flux in N2a/APP695swe cells

姜黄素增强逆向轴突运输促进N2a/APP695swe细胞自噬通量

阅读:8
作者:Jie Liang, Fanlin Zhou, Xiaomin Xiong, Xiong Zhang, Shijie Li, Xiaoju Li, Minna Gao, Yu Li

Abstract

The accumulation of autophagosomes and dysfunction at the axonal terminal of neurons play crucial roles in the genesis and development of Alzheimer's disease (AD). Abnormalities in neuron axonal transport-related proteins prevent autophagosome maturation in AD. Curcumin, a polyphenol plant compound, has been shown to exert neuroprotective effects by increasing autophagy in AD, but the underlying mechanism of its effect on autophagy axon transport remains elusive. This study investigated the effects of curcumin on autophagosome formation and axonal transport in N2a/APP695swe cells (AD cell model) as well as the mechanism underlying those effects. Curcumin treatment significantly increased the expression of Beclin1, Atg5, and Atg16L1, induced the formation of autophagosomes, and promoted autophagosome-lysosome fusion in N2a/APP695swe cells. At the same time, curcumin promoted the expression of dynein, dynactin, and BICD2 as well as their binding to form the retrograde axonal transport molecular motor complex. Moreover, curcumin also increased the expression of the scaffolding proteins Rab7- interacting lysosomal protein (RILP) and huntingtin in N2a/APP695swe cells. Taken together, our findings indicate that curcumin increases autophagic flux by promoting interactions among autophagic axonal transport-related proteins and inducing lysosome-autophagosome fusion. This study provides evidence suggesting the potential use of curcumin as a novel treatment for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。