Programming a Ferroptosis-to-Apoptosis Transition Landscape Revealed Ferroptosis Biomarkers and Repressors for Cancer Therapy

编程铁死亡到细胞凋亡的转变景观揭示了癌症治疗中的铁死亡生物标志物和抑制剂

阅读:7
作者:Yaron Vinik, Avi Maimon, Vinay Dubey, Harsha Raj, Ifat Abramovitch, Sergey Malitsky, Maxim Itkin, Avi Ma'ayan, Frank Westermann, Eyal Gottlieb, Eytan Ruppin, Sima Lev

Abstract

Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。