IRE1 and CaMKKβ pathways to reveal the mechanism involved in microcystin-LR-induced autophagy in mouse ovarian cells

IRE1 和 CaMKKβ 通路揭示微囊藻毒素 LR 诱导小鼠卵巢细胞自噬的机制

阅读:4
作者:Ya Ma, Haohao Liu, Xingde Du, Pavankumar Petlulu, Xinghai Chen, Rui Wang, Shiyu Zhang, Zhihui Tian, Linjia Shi, Hongxiang Guo, Huizhen Zhang

Abstract

Microcystin-LR (MC-LR) is an emerging water pollutant produced by blooming cyanobacteria. It could be absorbed into human body via contaminated food and drinking water causing severe reproductive toxicity. Previous studies showed that MC-LR could regulate autophagy by inducing endoplasmic reticulum (ER) stress thereby causing female reproductive toxicity. However, the molecular mechanisms of MC-LR-induced autophagy remain to be elucidated. It is known that IRE1 and CaMKKβ pathways are two important pathways involved in autophagy induced by ER stress. Hence, this study investigated the roles of both pathways in MC-LR-induced autophagy in mouse ovarian cells. The results showed that MC-LR significantly up-regulated the expression of autophagy marker proteins LC3Ⅱ and BECLIN1 and down-regulated the expression of P62 in vivo and in vitro. MC-LR-caused increase of autophagosomes could be observed in KK-1 cells by MDC staining. MC-LR induced the formation of autolysosomes as indicated by the overlap of LAMP1 and LC3. Meanwhile, MC-LR significantly activated the proteins in IRE1 pathway (IRE1, XBP1 and JNK) and in CaMKKβ pathway (CaMKKβ, AMPK, mTOR). Furthermore, MC-LR caused weight loss and ovarian histopathological damage in mice. In contrast, after the expression and function of IRE1 and CaMKKβ were inhibited with siRNA in vitro and by inhibitors (4μ8C and STO-609, respectively) in vivo, the up-regulation of LC3Ⅱ and BECLIN1 and the degradation of P62 induced by MC-LR were significantly suppressed. MC-LR-induced autophagosomes in KK-1 cells and autolysosomes in mouse ovarian cells were also decreased. Moreover, the knockdown of IRE1 and CaMKKβ relieved MC-LR-induced histopathological injury to mouse ovaries. These results indicated that MC-LR induced ovarian cell autophagy and ovarian injury via IRE1 and CaMKKβ pathways. This study is the first study revealing the molecular mechanisms of MC-LR-induced autophagy of ovarian cells and providing new insights into the female reproductive toxicity of MC-LR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。