Critical role for TARPs in early development despite broad functional redundancy

尽管存在广泛的功能冗余,但 TARP 在早期发展中仍发挥着关键作用

阅读:6
作者:Karen Menuz, Geoffrey A Kerchner, Jessica L O'Brien, Roger A Nicoll

Abstract

Transmembrane AMPA receptor regulatory proteins (TARPs), including gamma-2, gamma-3, gamma-4, and gamma-8, are auxiliary subunits for AMPA receptors. Based on studies in single knockout mice, it has been suggested that nearly all native AMPA receptors are associated with TARPs. To study the interplay between TARP family members and AMPA receptors in vivo, we generated mice lacking multiple TARPs. Triple knockout mice lacking gamma-3, gamma-4, and gamma-8 are viable and fertile, and synaptic AMPA receptor activity is reduced to a level comparable to that seen in gamma-8 single knockout mice. In contrast, triple knockout mice lacking gamma-2, gamma-3, and either gamma-4 or gamma-8 cannot survive ex utero. In particular, gamma-2, gamma-3, gamma-4 triple knockout mice are born apneic and paralyzed, despite normal AMPA receptor function in cortical and spinal neurons. We found that gamma-8 is expressed at low levels in early postnatal mice and regulates AMPA receptor levels at this developmental time period. Thus, the early expression of gamma-8 may be responsible for maintaining AMPA receptor functions in neonatal neurons. Together, our data indicate that TARPs, in particular gamma-2, are essential for early development, and that most neurons express multiple members of this functionally redundant protein family.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。