Prevention of Hypercholesterolemia with "Liposomes in Microspheres" Composite Carriers: A Promising Approach for Intestinal-Targeted Oral Delivery of Astaxanthin

“微球脂质体”复合载体预防高胆固醇血症:一种有前景的肠道靶向口服给药虾青素的方法

阅读:9
作者:Aiyang Liu, Mengxue He, Chunhuan Liu, Zhan Ye, Chin-Ping Tan, Yanjun Liu, Jiajia Gong, Jingnan Lei, Yuan He, Shuang Zhu, Jialiang Zhao, Yong-Jiang Xu, Yuanfa Liu

Abstract

Cardiovascular diseases are caused by hypercholesterolemia. Astaxanthin (AST) has been reported to exhibit antioxidant and anti-inflammatory properties. However, its bioavailability is poor because of low solubility and instability. In order to improve the bioavailability of AST, we developed an intestinal-responsive composite carrier termed as "liposomes in micropheres" incorporating N-succinyl-chitosan (NSC)-poly(ethylene glycol) (PEG) liposomes that functionalized by neonatal Fc receptors (FcRn) into hydrogels of sodium alginate (SA) and carboxymethyl chitosan (CMCS). In the AST NSC/HSA-PEG liposomes@SA/CMCS microspheres, the AST's encapsulation efficiency (EE) was 96.26% (w/w) and its loading capacity (LC) was 6.47% (w/w). AST NSC/HSA-PEG liposomes had stability in the gastric conditions and achieved long-term release of AST in intestinal conditions. Then, AST NSC/HSA-PEG liposomes@SA/CMCS bind to intestinal epithelial cell targets by the neonatal Fc receptor. In vitro permeation studies show that there was a 4-fold increase of AST NSC/HSA-PEG liposomes@SA/CMCS in AST permeation across the intestinal epithelium. Subsequent in vivo experiments demonstrated that the composite carrier exhibited a remarkable mucoadhesive capacity, allowing for extended intestinal retention of up to 12 h, and it displayed deep penetration through the mucus layer, efficiently entering the intestinal villi epithelial cells, and enhancing the absorption of AST and its bioavailability in vivo. And oral administration of AST NSC/HSA-PEG liposomes@SA/CMCS could effectively prevent hypercholesterolemia caused by a high-fat, high-cholesterol diet (HFHCD). These advancements highlight the potential of NSC/HSA-PEG liposomes@SA/CMCS composite carriers for targeted and oral uptake of hydrophobic bioactives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。