The Role of the miR-21/SPRY2 Axis in Modulating Proangiogenic Factors, Epithelial Phenotypes, and Wound Healing in Corneal Epithelial Cells

miR-21/SPRY2 轴在调节角膜上皮细胞促血管生成因子、上皮表型和伤口愈合中的作用

阅读:8
作者:Yun Zhang, Fukang Yuan, Lin Liu, Zufeng Chen, Xiaoyun Ma, Zhen Lin, Jun Zou

Conclusions

TGF-β1 or hypoxia induced miR-21 and inhibited SPRY2, thereby enhancing proangiogenic signaling, suppressing the epithelial phenotype, and promoting wound healing in corneal epithelial cells.

Methods

Corneal epithelial cells were cultured with TGF-β1 and/or under hypoxia conditions. miR-21 expression was measured by quantitative PCR. The direct targets of miR-21 were validated by the 3'-UTR luciferase reporter assay. Alterations of proangiogenic signaling and the epithelial-mesenchymal transition (EMT) phenotype after miR-21/Sprouty2 (SPRY2) knockdown were examined by Western blotting. The effect of conditioned medium on angiogenesis was assessed using the tube formation assay. Wound healing was evaluated by the migration and scratch assays.

Purpose

Subconjunctival injection of antagomir-21 attenuates the progression of corneal neovascularization. We examined the underlying mechanism by investigating the regulation of microRNA (miR)-21 expression and the involvement of miR-21 in the homeostasis of corneal epithelial cells.

Results

TGF-β1 or hypoxia upregulated miR-21, and miR-21 silencing abolished TGF-β1/hypoxia-induced hypoxia inducible factor (HIF)-1α and VEGF expression. miR-21 inhibited SPRY2 by directly targeting its 3'-UTR. Simultaneous silencing of miR-21 and SPRY2 significantly upregulated p-ERK, HIF-1α, and VEGF and promoted angiogenesis. Induction of miR-21 or inhibition of SPRY2 reduced the levels of cytokeratin (CK)-3 and CK-12 and promoted EMT. Transwell and wound healing assays indicated that miR-21 promoted cell migration. Conclusions: TGF-β1 or hypoxia induced miR-21 and inhibited SPRY2, thereby enhancing proangiogenic signaling, suppressing the epithelial phenotype, and promoting wound healing in corneal epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。