Deletion of ecto-5'-nucleotidase (CD73) reveals direct action potential-dependent adenosine release

删除外-5'-核苷酸酶(CD73)可揭示直接动作电位依赖性腺苷释放

阅读:7
作者:Boris P Klyuch, Nicholas Dale, Mark J Wall

Abstract

Purinergic signaling is a highly complex system of extracellular communication involved in many physiological and pathological functions in the mammalian brain. Its complexity stems from the multitude of purine receptor subtypes and endogenous purine receptor ligands (including ATP, ADP, UTP, UDP, and adenosine). Potentially all of these ligands could be directly released, and some could also arise from extracellular metabolism. A widely held consensus is that, except under pathological conditions, extracellular adenosine arises only from ectoATPase-mediated metabolism of previously released ATP. Here, we have used mice that lack the CD73 gene (encoding ecto-5'-nucleotidase that converts AMP to adenosine) to test whether action potential-dependent adenosine release in the cerebellum depends on prior ATP release. Surprisingly, we have uncovered two parallel pathways of adenosine release: one that is indirect via glutamate receptor-dependent release of ATP and a second of equal amplitude that has no dependence on prior release of ATP and thus represents the direct release of adenosine. This component of adenosine release is blocked by bafilomycin and modulated by mGlu4 receptor activation, strongly supporting adenosine release by exocytosis from parallel fibers. Our findings are a major step in understanding the mechanisms of adenosine release and are likely to have implications for all aspects of physiology where adenosine plays a key modulatory role.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。